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Abstract We prove that if P&) and pj(.z) are two families of semi-clmsical orthogonal 
polynomials, all the linearization coefficients Li,j.n occuring in the product of these two families 
satisfy a linear recurrence relation involving only the k index. This propeny also extends to 
the linearization coefficients arising from an arbitmy number of products of semi-classical 
orthogonal polynomials. 

1. Introduction 

Let { P k ]  be a system of polynomials of degree exactly equal to k .  The traditional 
linearization problem [1-4] consists of expanding the product PiPj in the { P k }  basis 
(P& E5 Pr): 

k=O 
When the { P k }  family is an orthogonal family (with respect to some positive measure 
dp(x)), many results conceming the positivity character of the coefficients L1.j.n [I, 5, 61, 
and conceming the recurrence relation satisfied by Li. j .k  11, 21 are known; in some cases 
(classical orthogonal polynomials) the coefficients LiJk are given explicitly, very often in 
terms of hypergeometric functions. 

In a recent paper [7], we proved that for a family of semi-classical orthogonal 
polynomials, the coefficients Li . j , k  satisfy a linear recurrence relation involving only the k 
index, which reduces to a second-order recurrence relation for the classical family (Jacobi, 
Bessel, Laguerre and Hermite). More recently, Lewanowicz [SI, rewriting the fourth-order 
differential equation for the product PiPj (Pi classical) given in 171, has obtained the explicit 
coefficient Ai@) ,  i = 0,1,2 of this second-order recurrence relation: 

Ao(k)Li.j.k-l + A I  ( k ) L i , j , k  -I Az(k)Li.j.k+~ = 0. (2) 
The aim of this work is to extend the linearization problem to two families of 

polynomials P;(x) and 3 ( x )  and to give the properties, including the recurrence relations, 
for the linearization coefficients (LC) defined by all the possible expansions: 
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2. Quadratic relations 

Without further assumptions about the two families q(x )  and p j ( x ) ,  the LC satisfy 
complicated quadratic relations as do the structure constants of any algebra (even associative 
and commutative). 

Let us write three LCS of the first two equations from the list in equation (3). obtained 
easily by multiplication by P, or Fr and expanding in terms of the P k  or 4: 

' L7.i.~ CL.s , j , t  = &j,k L7,k.t 
f k f 

I k I 

For all LC we have the symmetry property 

and in these quadratic relations all the summations run from 0 to s = a + b. Most of 
these relations mix the six LC taking care, however, that gives essentially the same 
information as L; . j , k ;  i ; , j , k  can also be compared to L $ , ~ .  

3. WO parameter Linear relations 

If we put an orthogonality structure in both Pi and pj families, the quadratic relations for 
the LC become linear relations but with two mixing indices as shown below. With Pi and 
pj being orthogonal families with,the positive orthogonality measures d&) and d,ii(x), 
they satisfy the recurrence relations 

x P ~  =AiPi+l+ BiP;+CiP;-l (6) 
(7) 

The multiplication of the six relations of equation (3) by x and the expansion of the results 
in terms of Pk and pk give, for instance, 

L0.b.c = Lb.u.c (5) 

X F j  = 'ijijpj+, + BjPj + QFj-I.  

AjLi . j+ l .k  + BjLi.j.k cjLi.j-l.k = AkLi.j,k-1 f BkL;. j ,k  + CkLri.j.k+I 

AjLxj+l,k + BjL:,j.k + ~ < j L ? j - l . k  = A.kL;.j,k-I f BkL?,j,k + ckL;j,k+I 

(8) 
(9) 

.... 
Because the index i is fixed, we generate some kind of cross rules for these linear 

relations: the index k running on a line and the three indices j ,  j + 1, j - 1 on a column 
mixing three lines. 

4. One parameter linear relations 

A major simplification arises if we now assume that both families Pi and pj are semi- 
classical. In these cases, P; and Fj satisfy a structure relation [9] 

n+r--l 
@(x)Pn(x)' = C k . n p k ( X )  (10) 

'~ k=n--r-l 
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where @(x)  and 8 ( x )  are polynomials of degree f and F respectively, and s and li are 
integers characterizing the class of families Pi and 4. ck,, and Q., are constants and for 
classical orthogonal polynomials, s = 0. These structure relations ensure that both families 
satisfy a second-order differential [lo] equation written as .~ 

where U, ‘5, A, (respectively 5, i, h,) are written for u(x, n), r(x,~n), An(x) .  
In the classical cases, however, U (respectively 5) and z (respectively i) depend only 

on x and A, (respectively h,) is independent of x and @ 
The procedure used to generate linear recurrence relations for all LC, mixing only one 

index (k), follows from the two steps given below. 
(i) From equations (12) and (13), there are many ways [ll] to build a fourth-order 

linear differential equation satisfied by the product P i ( x ) q ( x ) .  Let us call Q4(x, i, j )  the 
corresponding differential operator: 

U (respectively 8 5). 

- 
(14) 

(ii) The action of Q4(x, i, j )  on Pk or & (cf equation (1)) can be written as a linear, 
constant coefficient combination of Pk (or &), using the following technique [7] shown for 
the expansion in Pk but, of course, also valid for the expansion in &. 

(a) After iteration of the the derivative, the iteration of relation (IO) and (1 1) allows us 
to write 

where Dn,k(r) are constants easily computed at each step r = 2 , 3  and 4 and we use the 
recurrence relation (6) or (7) for Pi. For instance, for r =2 and from 

and we can repeat this process until r = 4. 
(b) The multiplication of equition (14) by an appropriate integer power of @ and 6, say 

Y(x) = @ h ( ~ ) b h ( ~ ) ,  allows us to obtain a constant coefficient linear recurrence relation in 
k from 

and by using equation (15). The recurrence relation (6) or (7) must also be applied numerous 
times depending on the degree of the polynomials in front of each W P f ’ .  This algorithm 
may not give the minimal-order recurrence relation for Ljjk if we, do not properly control 
the multiplicative factor Y(x). This procedure described for Lijr works for any of the 
generalized linearization coefficients (GLC), if the exponents A, h are chosen in an appropriate 
(minimal) way. 
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5. Classical situations 

Let us now give a quick way to build the operator Q&, i, j )  inside the classical class for 
Pi and 4. 

From the classical differential equations [12] (u(x) of degree < 2, t ( x )  of degree 1) 
--I 

UP," + tP/ + hjPi = 0 Ai = -[2r'+ ( i  - I)u"] 
2 

"$+";+ijFj = o  (19) 
we deduce for the product w = PiFj derived twice that 

OW" + W'T + (hi + &)w = 2UP/F; + (U - B)F!Pi + (t - f)PiF;. (20) 

After a trivial elimination in order to keep the factors P,l?i and Pip,! only, multiplication 
by B allows us to obtain 

(21) ?Jz[w] = AoP/F; + EoPjF,! 
where 

? J ~ = B ~ D ~ f b t D + ( h i B + ~ j u ) l  A o = k Z  Bo=Br-?u .  (22) 

(23) 

The derivative of equation (21) multiplied by B will generate a Kid-order relation ?JD3[w], 
again developed in the basis P;p,! and~PiF;: 

'D~[w] = AlP/F,! + BlPjF;. 

Q 4 ( x , i ,  j ) [ w l =  
4 t w l  Ao Bo 
W w l  A I  BI =O. 
4 [ w I  A2 Bz 

6. Example inside classical families 

As a first example, let us consider P; classical, Fj = Pj (also classical), and in order to 
simplify again we choose i = j :  

The equation satisfied by P? = y (Pip/ = i(P?)') is of order three (i = j )  instead of order 
four (i # j )  and is well known [7, 8,111: 

(27) 
From this, coefficients L;i.k and & t  can be approached in the following way. 

CT~Y''' + 3ury" + [u(d + 4hi) + s(2r - u')]y' + 2bi(2t - u')y = 0. 

Consider 

= &.i.p& (28) 

where Lj . i .k  is a solution of equation (2) with i = j [7, 81. The first derivative of 
equation (28) gives 

k 

G i , k  = 4 i i . i . k  (29) 
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and qi.k, therefore, satisfies equation (2).  L;i,k can be found in at least two ways. 

of the derivative 
(i) From the well-known I121 representation of classical orthogonal polynomials in terms 

(30) pn =a&+, + BnP; + Y A ,  
equation (26) gives 

L?’ w k  a k q i , k - l  + B k q i , k  + yk%i,k+l. ( 3 1 )  
(ii) The operator Q4(x, i ,  i )  coincides a priori up to a polynomial factor’ with the 

operator obtained by the~double derivation of equation (27) (y’ = +Pip/), giving a fourth- 
order equation for w = 2y’: 

u’uJ(~)  + 0[40’  + 3r]d3’ + [2na + 2nd’ + 50’7 + 70r’  + 40hi + 2rZ] w“ 

Let us recall that for w = Pip:, the data in equation (13) are (pi = Pi() 
+ w ’ [ u ” ~  + 6 0 ’ ~ ’  + 8rr’ + 2 h i ( 3 ~ ’  + 2>)] + ~ ~ ’ ( 4 7 ’  - U ”  + 8hi) = 0. 

5 = 0  f = 7 + 0 ’  xi = hi + r‘ (32) 
and a direct construction of equation (25) is simplified a little using the equality U = 5 .  

If U is of degree two (Jacobi, Bessel), polynomials q,(x, i, i) are of degree exactly 
equal to r ;  the coefficients of D4 are uz and the coefficients of D3 contains a factor U .  

This allows us to expand 0 = Q&, i ,  i ) y  = ck L;.i.kQ4(x, i ,  i)Px in the basis of the 
second derivative P[ giving, therefore, a recurrence relation in k of order five for L $ k .  We 
proceed using the following expressions (the classical character of pk allows us to extend 
a11 the expressions given for PX to P; . . . ~ f )  (the recurrence relation ( U ) ,  the structure 
relation (13), equation (32). . .)): 
qopk = P[ (five terms) 

q1 P; = P[ (five terms using the recurrence relation for PL) 
qzP[ = C P[ (five terms using the recurrence relation for P[) 
q3~: = r,u(P[)’ = 

q 4 P r  = uz(P[)” = 

P[ (five terms using the structure 

P[ (five terms using the structure 

and recurrence relations for P[) 

and recurrence relations for P[). 
It is easy to check that the expansion in terms of pk instead of P[ generates, in this 

case, a recurrence relation of order seven. 

7. Regularity of Sobolev inner product 

Linearization coefficients appear in a natural way in polynomials orthogonal with respect 
to the Sobolev inner product [ 1 3 ] .  Let us choose a relatively general scalar product, easily 
extended to more than one weight: 

h 

(pis pj)  1 f i ( x ) t A l ~ ‘ ( x ) p ( x ) ~  (33) 

with 

P i @ )  = ( P i ( X ) ,  P,l(x), . . . , Pi“+)) 
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and 

[AI = [AI' = [A,,I 0 < r, s < N 
The regularity, or the positivity, of this scalar product implies that, for all non-negative 

Am # 0. 

integer i ,  

(Pi, Pi) # 0 or (Pi, Pi) t 0. 

These conditions on coefficients can be written as 

where 

with 

(35) and orthogonality properties, integral (34) reduces to (monic polynomials) 
h 

(36) 

This new linearization problem now involves three families, but is an obvious extension 

p . 3 '  - Lr.I c - i.i.o 0 with CO = 1 p ~ b .  

of the cases presented in (3) and can be written as 

with 
- .  

4 = P?)(X) Pj = P:"'(x). 

When Pk(x) is classical and, therefore, a solution of equation (12) 4, for instance, is a 

(38) 

solution of 
r + i - I  

~ $ + ( ( s + r u ' ) F ~ + ( r - i )  t'+. 4 Pi = 0 [ 
- 

and P j  a solution of the same equation with i + j and r -+ s. 

A & operator annihilating the product F i P j  can easily be constructed by obvious 
extensions of the development given in section 5 .  The action of 0 4  on pk as in equation 
(18), is particularly simple to - compute using the fact that the same U and t are present in 
the three families Pk. 4 and p j .  

- 

~~ 
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8. Example inside semi-classical family 

As mentioned in section 4, this algorithm applies not only to the classical family but also 
to the very large class of semi-classical orthogonal polynomials. 

However, even simple examples give very cumbersome computations. Let us comment 
on the following situation mixing Hermite polynomials Hi(x) and generalized Hermite 
polynomials 1141 (non-classical) ~ j ( s ) ( x ) ,  orthogonal with respect to the weight 

~x 12qe-A2 - 00 c x < +CO ( q  2 -i). 
With Pi = Hi(x) and pj = f$(')(x) we can consider the six cases mentioned in equation (3). 
Both families are symmetrical (Pi(-x) = ( - l ) jPi(x) ,  p j ( -x )  = ( - l ) jP j (x ) ) ,  so we know 
already that the recurrence relation for the six linearization coefficients are of odd order (k  
runs on even numbers only in the even-even or odd-odd cases, and runs on odd numbers 
only in the even4dd or odd-even cases). 

The first case P;Pj = xLi . j ,& ,  is the only case which belongs to the classical 

linearization problem and the three-term recurrence relation for Li,,,k is easily solved [7, 
81. 

k 

In order to apply this algorithm in the five remaining cases, the data are 

5 = -2x A, =~2n r=' Z = X ?  i = 2 x ( q - x 2 )  .i=2nx2-e,, 

{ - J - 2  A .  - 1 B j = 0  C j = n + e , , .  

(39) 

where 62, = 0, Oh+, =.2r7, and in, the normalization of Chihara [14], 

A .  - 1 B j = O '  Cj =n-  
(40) 

The fourth-order operator annihilating PiPj (second case) is already well known [15] and 
reads as 

o4 - ~ X D ~  + 4 [5xZ - 2 + (i + j ) ]  0' 

J - 2  

+4x [13 - 4(i + j ) ] D  + 4 [ ( i  - j) '+ 2(i + j)(Zx2 - l ) ]  . (41) 

The operator Q4(x, i ,  j )  annihiliating PiPj can be constructed as in section 5 taking care 
now that pj is no longer classical (In is no longer constant for instance); in the same way 
Q4 annihilates &pj .  

Considering these five cases, the simplest cases should be the second, fifth and sixth 
given recurrence relations for &.k, LG,k and &. 

The coefficients of all these recurrence relations are very complicated and can only be 
obtained using a symbolic manipulation package like MATKEMATICA. 

The case pip, is keated in a survey on generalized Hermite polynomials [15]; the 
coefficients filled many pages! 

Let us just mention that for the recurrence relation is of order two in the even-even 
cases, four in the odd-odd cases, and six in the even-odd or odd-even cases. 

As a final remark, let us say that the main result of this paper, which proves the existence 
of a linear recurrence relation, in k only, for the LC Lj.j.k of the product of two semi-classical 
orthogonal polynomials Pi and pj,  is obviously also true for the extended Lc defined by 
Pi, ... pi, = xk Li, ,.... i,.aPk where the equation satisfied by y = Pi, ... pi, is of order at 
most 2r. 
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