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Abstract. We prove that if P;{x) and E-’j(x) are two families of semi-classical orthogonal
polynomials, all the linearization coefficients L;, ; + occuring in the product of these two families
satisfy a linear recurrence relation involving only the & index. This property also extends to
the linearization coefficients arising from an arbitrary number of products of semi-classical
orthogonal polynomials.

1. Introduction

Let {P,} be a system of polynomials of degree exactly egual to k. The traditional
linearization problem [1-4] consists of expandmg the product P;P; in the {P;} basis
(Prx) = Pr):
i+
Pi=3Y Lijh. . (1)
- k=0
When the {P;} family is an orthogonal family (with respect to some positive measure
dit(x}), many results concerning the positivity character of the coefficients L; ; 1, 5, 6],
and concerning the recurrence relation satisfied by L; ;x [1, 2] are known; in some cases
(classical orthogonal polynomials) the coefficients L; ; are g1ven explicitly, very often in
terms of hypergeometric functions.

In a recent paper [7], we proved that for a family of semi-classical orthogonal
polynomials, the coefficients L; ;x satisfy a linear recurrence relation involving only the £
index, which reduces to a second-order recurrence relation for the classical family (Jacobi,
Bessel, Laguerre and Hermite). More recently, Lewanowicz [8], rewriting the fourth-order
differential equation for the product P; P; (P; classical) given in [7], has obtained the explicit
coefficient A;(k),i =0, 1, 2 of this second-order recurrence relation:

AolYL; jr—1 + A(EYL; jp + A2(R) L jggr = 0. @)

" The aim of this work is to extend the linearization problem to two families of
polynomials F;(x) and P;(x) and to give the properties, including the recurrence relations,
for the linearization coefficients (LC) defined by all the possible expansions:

PP = Zk:L,-,j,kPk PP = ;ii.j.kﬁk P P ZL: ;kPk

BE =) Liuh BB =3 LGk BE= Z‘,Luk
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2. Quadratic relations

Without further assumptions about the two families F;(x) and P,- (x), the LC satisfy
complicated quadratic relations as do the structure constants of any algebra (even associative
and commutative).

Let us write three LCs of the first two equations from the list in equation (3), obtained
easily by multlphcatlon by P, or P, and expanding in terms of the P or B

ZLMZ‘,L”,_ZL,”ZLW
ZL”‘ZLSN_ZLUICZL:-M )]
ZL”\ZL”: _;Li.j.kZLr_k_t.

t

For all LC we have the symmetry property

La.b.c = Lb.a.c (S)

and in these quadratlc relations all the summations run from O to s = a + b. Maost of
these relations mix the six LC taking care, however, that L, gives essentially the same

information as Lj j.; Li & can also be compared to Ly ke

Ik

3. Two parameter linear relations

If we put an orthogonality structure in both P and FJ families, the quadratic relations for
the LC become linear relations but with two mixing indices as shown below. With P; and
P; being orthogonal families with the positive orthogonality measures du(x) and dii(x),
they satisfy the recurrence relations

xP; = A;iPiz1 + Bi P + C P (6)

x Py = A;Prsy + B Py + C Py %)
The muitiplication of the six relations of equation (3) by x and the expansion of the resuits
in terms of Py and P, give, for instance,

AjL;jy1e+ BiLije +_Cij.j-1,k = ArLija1 + BeLijo + Celijer  (8)
ALY et BiL] o+ Gl = ArLijpor + Beli i+ Gl g )

Because the index i is fixed, we generate some kind of cross rules for these linear
relations: the index & runuing on a line and the three indices j, j 41, j — I on a column
mixing three lines.

4. One parameter linear relations

A major simplification arises if we now assume that both families P; and P; are semi-
classical. In these cases, P; and P satisfy a structure relation [9]

nhr—=1
QW P(xY = ) CinPr®) (10)
- k=n—s—1
_ _ n4-f=1 oL .
S PxY = Y, CenPilx) (am)

k=n—§—1
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where ®(x) and $(x) are polynomials of degree ¢ and 7 respectively, and s and 5 are
integers characterizing the class of families P; and }3 Ci.. and Cp , are constants and for
classical orthogonal polynomials, s = 0. These structure relations ensure that both famﬂles
satisfy a second-order differential [10] equation written as

O P/ (x) + TPI(x) + Au Pu(x) = 0 (12)
FPI(xY+ TP (x) + R Pa(x) =0 ' (13)

where o, 7, A, (respectively &, 7, A,) are written for ¢ (x, 1), T(x, 7), An(x).

In the classical cases, however, o (respectively &) and 7 (respectively T) depend only
on x and A, (tespectively A,) is independent of x and ® = & (respectively @ = ).

The procedure used to generate linear recurrence relations for all LC, mixing only one
index (k), follows from the two steps given below.

(i) From equations (12) and (13), there are many ways [11] to build a fourth-order
linear differential equation satisfied by the product P,-(x)ﬁj(x). Let us call Qa(x, £, j) the
corresponding differential operator:

Qalx,i, Yyl =0  y=PBP (14)
4
. e ey _d
Qalx,i, j) = rZﬂ;qr(x, i, HD D=

(if) The action of Qu(x, %, j) on Py or Py (cf equation (1)) can be written as a linear,
constant coefficient combination of Py (or P;), using the following technique [7] shown for
the expansion in P; but, of course, also valid for the expansion in P;.

(a) After iteration of the the derivative, the iteration of relation (10) and (11) allows us
to write

@' PV = Z Dy 1 (r) Py r=22734 C a8
k i

where D, ;(r) are constants easily computed at each step r = 2,3 and 4 and we use the
recurrence relation (6) or (7) for P;. For instance, for r =2 and from

B(OP)Y =3 Crn®P _ | (16)
k

we deduce

GPr =D Crn ) CoxPr— 'Y CinP ‘ ’ (17)
k ¥ t

and we can repeat this process until » = 4. _

(b) The multiplication of equation (14} by an appropriate integer power of ® and ®, say
W(x) = ®*(x)d*(x), allows us to obtain a constant coefficient linear recurrence relation in
k from

ZLijk"I’(x)Q4(x: L) Pe=0 (18)

and by using equation (15). The recurrence relation (6) or {7) must also be apphecl NUMeErous
times depending on the degree of the polynomials in front of each ®” Pk This algorithm
may not give the minimal-order recurrence relation for L;j if we do not properly control
the multiplicative factor ¥(x). This procedure described for L;;; works for any of the
generalized linearization coefficients (GLC), if the exponents A, A are chosen in an appropriate
{minimal) way.
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5. Classical situations

Let us now give a quick way to build the operator Q4(x, £, j} inside the classical class for
P,' and Pj.
From the classical differential equations [12] (& (x) of degree < 2, t(x) of degree 1)

P +TF+MP=0  k=—[20+(~1)0"]

G B!+ TP+ 3By =0 (19
we deduce for the product w = P,-ISJ- derived twice that

ow' +w't+ O +A)w =20P/ P/ + (¢ =3P/ P +(x ~ DIPP].  (20)
After a trivial elimination in order to keep the factors PP/ and F; P} only, multiplication
by & allows us to obtain

Dy[w) = AoP{ P} + BoPi P} (21)
where
Dy =G0 D + 51D + (MG + Mo) Ap =200 By =671 — To. (22)

The derivative of equation (21) multiplied by & will generate a third-order relation Dj[w],
again developed in the basis P’P’ and P; P’

Di[w] = AlP,.’Pj’ + B;P,-P:,-, (23)
In the same way a fourth-order relation gives
Dylw] = AP/ P" +BP; P 24)
Q4(x, i, j) is, therefore, given in a determinantal form as
DyJw] Ap By
Qalx, i, Hlwl =] Ds3[w] Ay By |=0. (25)
Dylw] Ay B,

6. Example inside classical families
As a first example, let us consider P; classical, P:, = Pj’ (afso classical), and in order to
simplify again we choose { = j:

w= PP = E Ly = Z Ef; 1P (26)

% P
The equation satisfied by P? = y (P P/ = %(Pf)’ } is of order three (i = j) instead of order
four ( #= j) and is well known [7, 8,11]:
o2y” 4 30Ty’ + [o(r +4h) + 12T — oY + 20,21 — o)y =0. (27)

From this, coefficients L}; , and L Tik can be approached in the following way.
Consider

= Z LiinPe (28)
%

where f,g_,-_k is a solution of equation (2) with i = j [7, 8]. The first derivative of
equation (28) gives

E?_,—,k = %I:r'.i.k (29)
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and LY, ,, therefore, satisfies equation (2). L}, can be found in at least two ways.
(i) From the well-known [12] representation of classical orthagonal polynomials in terms
of the derivative

Py=ay r:+l + BuPr+ vaPyy ) (30)
equation (26) gives
LY=ol + 8Ll + vl (31)

(ii) The operator Q4(x,i,f) coincides @ priori up to a polynomial factor’ with the
operator obtained by the double derivation of equation (27) (' = %P,- P/}, giving a fourth-
order equation for w = 2y";
o?w® + oldo’ + 301w® + [207 + 200" + 50't + To ' + dod; + 277 w”

+w'[o”t + 60’ + 877 + 24,30 +21)] +wr'(@r — 6" +82,) =0.
Let us recall that for w = P; P/, the data in equation (13) are (B =-Pl.’ }

F=0 IT=1+0 M=h+T1 (32)
and a direct construction of equation (25) is simplified a little using the equality o = &.

If o is of degree two (Jacobi, Bessel), polynomials ¢.(x,{, i) are of degree exactly
equal to r; the coefficients of D* are o2 and the coefficients of D? contains a factor o,
This allows us to expand 0 = Qu(x,i, D)y = Zk Ly 1 Qalx,i,i) Py in the basis of the
second derivative P giving, therefore, a recurrence relation in 4 of order five for L}, ,. We
proceed using the following expressions (the classical character of P allows us to extend

all the expressions given for Py to P....PY (the recurrence relation (12), the structure
relation (13), equation (32)...)):

goPe =) P{ (five terms)
q Pl = Z P/ (five terms using the recurrence relation for P)
@ P = Z P! (five terms using the recurrence relation for P!
@ P = no(Ply = Z P/ (five terms using the structure

and recurrence relations for Py’
g Py =Pl = Z P, (five terms using the structure

and recurrence relations for P;').

It is easy to check that the expansion in terms of P instead of P generates, in this
case, a recurrence relation of order seven. -

7. Regularity of Sobolev inner product

Linearization coefficients appear in a natural way in polynomials orthogonal with respect
to the Sobolev inner product f13]. Let us choose a relatively general scalar product, easily
extended to more than one weight:

o
(P P = [ POALP! (x)p(x) dx (33)
with
P.(x) = (Bi(x), P{(x), ..., P (x))



4428 A Ronveaux et al
and
(AT =AY =14,,] 0g<rnsg N Ago # 0.

The regularity, or the positivity, of this scalar product implies that, for all non-negative
integer i,

(P, P)#0 or (P, P;) > 0.

These conditions on coefficients A, can be written as

N N
DD astAQ@  (or >0)
r=0 =0
where
b
I = f POx)PY p(xydx (34)
with

I
Gry = Qg r = 'Z'Ar..v (r #5)
Os.s = Asse

Using a linearization of Pj(’)(x)Pi(“') (x) in the form

PN PE = Z L} Pe(x) (35)
k

(35) and orthogonality properties, integral (34) reduces to (monic polynomials)
b
I = L7 4Co with Cp = f o) dx. (36)
[

This new linearization problem now involves three families, but is an obvious extension
of the cases presented in (3) and can be written as

Ep; = > hijePe (37
"
with .
}’5‘, — Pi(r)(x) E =7Pj($)(x).

When Py (x) is classical and, therefore, a solution of equation (12) 7, for instance, is a
solution of

> P =0 (38)

o P! + (T + 1oV B! + (r — i) [r + Ll_—la”} p

and P; a solution of the same equation with i — jandr—s.

A Q4 operator annihilating the product B P can easily be constructed by obvious
extensions of the development given in section 5. The action of @4 on Py as in equatlon
{18), is particularly simple to compute using the fact that the same o and T are present in

the three families P, P; and P
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8. Example inside semi-classical family

As mentioned in section 4, this algorithm applies not only to the ¢lassical family but also
to the very large class of semi-classical orthogonal polynomials.

However, even simple examples give very cumbersome computations. Let us comment
on the following situation mixing Hermite polynomials H;(x) and generalized Hermite
polynomials [14] (non-classical) Hj(”)(x), orthogonal with respect to the weight

e —co<x<doe (72D

With P; = H;(x) and P; = H}(”) (x) we can consider the six cases mentioned in eguation (3).
Both families are symmetrical {P;{—x) = (= 1) P:(x), f{,-('—x) == (—1)/ P;(x)), so we know
already that the recurrence relation for the six linearization coefficients are of odd order (&
runs on even numbers only in the even—even or odd—odd cases, and runs on odd numbers
only in the even—odd or odd-even cases).

The first case PP = ZL, jxPy, is the only case which belongs to the classical

linearization problem and the three-term recurrence relation for L; ,x is easily solved [7,
8].
In order to apply this algorithm in the five remaining cases, the data are

oc=1 T=-2x Ap=2n
2 F 2 Y 2 (39)
o =x“ T=2x(n—x"} A=2nx" -8, -
where fay = 0, Bapy; =21, and in, the normalization of Chihara [14],
Ayj=1 B;=0" Cj=n
? 1 J ] (40)
A-—— BJ=0 CJ=n+6,,

The fourth-order operator annihilating P;P; (second case) is already well known [15] and
reads as

D —8x D +4[5x* —2+ (i + )] D?
+4x [13 — 40 + DID +4[G — j)® + 20 + Hea* - 1)]. (1)

The operator Q4(x, i, j) annihiliating P; P; can be constructed as in section 5 taking care
now that P is no longer classical (An is no longer constant for instance); in the same way
Oa anmh:lates P P

Considering these five cases, the simplest cases shouid be the second, fifth and sixth
given recurrence relations for ; ks L7, and Ly ke

The coefficients of all these recurrence relations are very complicated and can only be
obtained using a symbolic manipulation package like MATHEMATICA.

The case 13,1?} is treated in 2 survey on generalized Hermite pelynomials [15]; the
coefficients filled many pages!

Let us just mention that for f, i the recurrence relation i is of order two in the even—even
cases, four in the odd—odd cases, and six in the even—odd or odd—even cases.

As a final remark, let us say that the main result of this paper, which proves the existence
of a linear recurrence relation, in £ only, for the LC L; ; of the product of two semi-classical
orthogonal polynomials P; and P;, is obviously also true for the extended LC defined by
Py ...P, = 3 L, i «P: where the equation satisfied by y = P, ... P;, is of order at
most 2r.
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